Time: 3 hours

Marks: 50

- (1) Let f(x) be a polynomial in F[x] of degree n, and let E be a splitting field of f. Show that [E:F] divides n!. (8)
- (2) (a) Prove that any finite field is isomorphic to \mathbb{F}_{p^n} for some prime p and some integer $n \ge 1$. (b) Show that the field \mathbb{F}_{p^n} is the splitting field of the polynomial $x^{p^n} - x$ over \mathbb{F}_p .
 - (c) Show that the Galois group of \mathbb{F}_{p^n} over \mathbb{F}_p is cyclic of order *n*. Find a generator.
 - (d) List down all the subfields E of \mathbb{F}_{p^n} containing \mathbb{F}_p . (3+3+4+5)
- (3) Identify the Galois group of the splitting field E of $x^4 3$ over \mathbb{Q} . Determine the number of quadratic extensions of \mathbb{Q} contained in E. (8)
- (4) Let F be a field of characteristic not dividing n which contains the nth roots of unity. Then
 (a) show that for any α such that αⁿ ∈ F, the extension F(α) is a cyclic extension over F, of degree dividing n, and
 (b) show that any cyclic extension of degree n over F is of the form F(α), for some α such

(b) show that any cyclic extension of degree n over F is of the form $F(\alpha)$, for some α such that $\alpha^n \in F$. (4+5)

(5) Show that the Galois group of the quintic $f(x) = x^5 - 4x - 1$ over \mathbb{Q} is S_5 . (10)
